Elastomeric PGS Scaffolds in Arterial Tissue Engineering

نویسندگان

  • Kee-Won Lee
  • Yadong Wang
چکیده

Cardiovascular disease is one of the leading cause of mortality in the US and especially, coronary artery disease increases with an aging population and increasing obesity. Currently, bypass surgery using autologous vessels, allografts, and synthetic grafts are known as a commonly used for arterial substitutes. However, these grafts have limited applications when an inner diameter of arteries is less than 6 mm due to low availability, thrombotic complications, compliance mismatch, and late intimal hyperplasia. To overcome these limitations, tissue engineering has been successfully applied as a promising alternative to develop small-diameter arterial constructs that are nonthrombogenic, robust, and compliant. Several previous studies have developed small-diameter arterial constructs with tri-lamellar structure, excellent mechanical properties and burst pressure comparable to native arteries. While high tensile strength and burst pressure by increasing collagen production from a rigid material or cell sheet scaffold, these constructs still had low elastin production and compliance, which is a major problem to cause graft failure after implantation. Considering these issues, we hypothesized that an elastometric biomaterial combined with mechanical conditioning would provide elasticity and conduct mechanical signals more efficiently to vascular cells, which increase extracellular matrix production and support cellular orientation. The objective of this report is to introduce a fabrication technique of porous tubular scaffolds and a dynamic mechanical conditioning for applying them to arterial tissue engineering. We used a biodegradable elastomer, poly (glycerol sebacate) (PGS) for fabricating porous tubular scaffolds from the salt fusion method. Adult primary baboon smooth muscle cells (SMCs) were seeded on the lumen of scaffolds, which cultured in our designed pulsatile flow bioreactor for 3 weeks. PGS scaffolds had consistent thickness and randomly distributed macro- and micro-pores. Mechanical conditioning from pulsatile flow bioreactor supported SMC orientation and enhanced ECM production in scaffolds. These results suggest that elastomeric scaffolds and mechanical conditioning of bioreactor culture may be a promising method for arterial tissue engineering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physiologic compliance in engineered small-diameter arterial constructs based on an elastomeric substrate.

Compliance mismatch is a significant challenge to long-term patency in small-diameter bypass grafts because it causes intimal hyperplasia and ultimately graft occlusion. Current engineered grafts are typically stiff with high burst pressure but low compliance and low elastin expression. We postulated that engineering small arteries on elastomeric scaffolds under dynamic mechanical stimulation w...

متن کامل

Artificial niche combining elastomeric substrate and platelets guides vascular differentiation of bone marrow mononuclear cells.

Bone marrow-derived progenitor cells are promising cell sources for vascular tissue engineering. However, conventional bone marrow mesenchymal stem cell expansion and induction strategies require plating on tissue culture plastic, a stiff substrate that may itself influence cell differentiation. Direct scaffold seeding avoids plating on plastic; to the best of our knowledge, there is no report ...

متن کامل

Poly(Limonene Thioether) Scaffold for Tissue Engineering.

A photocurable thiol-ene network polymer, poly(limonene thioether) (PLT32o), is synthesized, characterized, fabricated into tissue engineering scaffolds, and demonstrated in vitro and in vivo. Micromolded PLT32o grids exhibit compliant, elastomeric mechanical behavior similar to grids made of poly(glycerol sebacate) (PGS), an established biomaterial. Multilayered PL32o scaffolds with regular, g...

متن کامل

Highly elastomeric poly(glycerol sebacate)-co-poly(ethylene glycol) amphiphilic block copolymers.

Poly(glycerol sebacate) (PGS), a tough elastomer, has been proposed for tissue engineering applications due to its desired mechanical properties, biocompatibility and controlled degradation. Despite interesting physical and chemical properties, PGS shows limited water uptake capacity (∼2%), thus constraining its utility for soft tissue engineering. Therefore, a modification of PGS that would mi...

متن کامل

Hemocompatibility evaluation of poly(glycerol-sebacate) in vitro for vascular tissue engineering.

Poly(glycerol-sebacate) (PGS) is an elastomeric biodegradable polyester that could potentially be used to engineer blood vessels in vivo. However, its blood-material interactions are unknown. The objectives of this study were to: (a) fabricate PGS-based biphasic tubular scaffolds and (b) assess the blood compatibility of PGS in vitro in order to get some insight into its potential use in vivo. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 119  شماره 

صفحات  -

تاریخ انتشار 2011